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Introd d Motivati Execution Template Implementati

+ Available cloud frameworks either support fine-grained * Basic Blocks: execution templates cache control plane decisions at the
task scheduling or high task throughput, but not both. granularity of basic blocks in the driver program. Unlike batching, execution
templates are capable of handling nested-loops and data-dependent branches.

* We have implemented execution templates in a cloud
computing framework called Nimbus.

» Systems such as Naiad and TensorFlow install static data * Execution templates cache the control dependency between
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* Templates are instantiated by passing new task identifiers and
parameters to the workers.
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» For reoccurring computations cache the control
decisions on computing nodes as templates and
instantiate the templates with new parameters.

¢ Patch: templates are not bound to a
static control flow. Controller can patch
the worker state to enforce the required
preconditions of the templates.
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» Changes in scheduling are supported as edits in the

installed templates. The cost of scheduling is proportional
to the size of changes.
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*The cost of edits is proportional to the size of
scheduling changes (single edit costs 41ps).
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* Although Nimbus has a centralized controller
similar to Spark, it handles orders of magnitude
higher task throughput.
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* Nimbus with execution templates matches
the performance of distributed frameworks
with static data flow (Naiad) while keeping the
scheduling granularity (Spark).
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e Execution templates allow running complex water
simulation (PhysBAM) with triply-nested loop and data
dependent branches within 15% of MPI performance.
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