Scalable, Fast Cloud Computing with Execution Templates

Omid Mashayekhi, Hang Qu, Chinmayee Shah, Philip Levis

Introd d Motivati Execution Template Implementati

+ Available cloud frameworks either support fine-grained * Basic Blocks: execution templates cache control plane decisions at the
task scheduling or high task throughput, but not both. granularity of basic blocks in the driver program. Unlike batching, execution
templates are capable of handling nested-loops and data-dependent branches.

* We have implemented execution templates in a cloud
computing framework called Nimbus.

» Systems such as Naiad and TensorFlow install static data * Execution templates cache the control dependency between

flow graph for efficiency but sacrifice scheduling flexibility. while (error > threshold_e) { Training Estimation tasks, data access patterns, and task executables.
i while (gradient > threshold_g) { Data Data i
» Systems such as Spark schedule at the task granularity // Optimization code block 2 @ * Workers can queue tasks and resolve dependencies locally.
gradient = Gradient(tdata, coeff, param S 8
but only handle few thousands tasks per second. coeff += gradient £~ £ * Inter-worker dependencies are encoded as data copy
1] e . B
[Control Plane 7/ Estimation code block 8 s commands; workers exchange data directly.
= Estimat data, ff, . . .
- Computation f,;:;,: = u;dﬂ: ﬁiﬁei(;riﬁe errzi;am * Nimbus has a mutable data model which allows caching the
159 164 3 - ’ Iterative Optimizer Error Estimation P
} data access patterns within the template.

* Templates are instantiated by passing new task identifiers and
parameters to the workers.

Iteration Time (s)

40 50 60

70
Number of Workers

80 90 100

Controller

Controller

 Edit: minor changes in the scheduling,

Logistic regression in Spark 2.0 MLlib: Increasingly parallelizing reduces computation . . - Instantiate & Task IDs
time (black bars) but control overhead outstrip these gains, increasing completion time. fOI" exam ple taSk m Igrahons, reﬂeCt n Instantiate Instantiate Parameters
the templates as in place edits added by X Oread iy
. s read & write
* Execution templates introduce a new design point: controller upon instantiation. .no_mm Worker 2

» For reoccurring computations cache the control
decisions on computing nodes as templates and
instantiate the templates with new parameters.

¢ Patch: templates are not bound to a
static control flow. Controller can patch
the worker state to enforce the required
preconditions of the templates.

Worker 1

Edits: migrating task from
worker 2 to worker 1.

Data Copy
» Changes in scheduling are supported as edits in the

installed templates. The cost of scheduling is proportional
to the size of changes.

Evaluation

HPC Applications

Patching the
worker state.

Fine-Grained Scheduling Task Throughput Data Analytics

*The cost of edits is proportional to the size of
scheduling changes (single edit costs 41ps).

N

Template Installation Cost

Edit Cost as Fraction
of Installation Cost
=

o
o

0.2 0.4 0.6
Edit Size as Fraction

of Template Size

0.8 1.0

* Although Nimbus has a centralized controller
similar to Spark, it handles orders of magnitude
higher task throughput.

_. 6
g 4
28
&2 OO Spark-opt
=N
e o
.‘E§ 15
X< g
4 & 100
=3
< 50
E O-O Nimbus
0

10 20 30 40 50 60 70 80 90 100
Number of Workers

* Nimbus with execution templates matches
the performance of distributed frameworks
with static data flow (Naiad) while keeping the
scheduling granularity (Spark).

5 Logistic Regression over 100GB of Data

2?_ [Control Plane

-

HEl Computation

Iteration time (s)
=

(=]

20 50 100

Spark-opt

20 50

100
Naiad-opt
Number of Workers

e Execution templates allow running complex water
simulation (PhysBAM) with triply-nested loop and data
dependent branches within 15% of MPI performance.

#eell (#parts) entire step solver iteration
#access rate #access rate

512° (64) 15SM 63Kps 13K 92Kps

10243 512 12.5M 394Kps 102K 463Kps

Iteration Time (s)

196.8

s
— BY

Nimbus /wo templates

@8 Nimbus @B MPI

Stanford University

nimbus.stanford.edu ﬁ

