
read	&	write	

read	

no-access	

t1	P1	

t3	P3	

t2	P2	

while	(error	>	threshold_e)	{	
	while	(gradient	>	threshold_g)	{	
	 	//	Optimization	code	block	
		 	gradient	=	Gradient(tdata,	coeff,	param)	
	 	coeff	+=	gradient	
	}	
	//	Estimation	code	block		
	error	=	Estimate(edata,	coeff,	param)	
	param	=	update_model(param,	error)	

}		

Training	
Data	

Es,ma,on	
Data	

Pa
ra
m
et
er
s	

Error	Es,ma,on	Itera,ve	Op,mizer	

Co
effi

ci
en

ts
	

• 	We	have	implemented	execu1on	templates	in	a	cloud	
compu1ng	framework	called	Nimbus.	

• 	Execu1on	templates	cache	the	control	dependency	between	
tasks,	data	access	pa>erns,	and	task	executables.	

• 	Workers	can	queue	tasks	and	resolve	dependencies	locally.		

• 	Inter-worker	dependencies	are	encoded	as	data	copy	
commands;	workers	exchange	data	directly.	

• 	Nimbus	has	a	mutable	data	model	which	allows	caching	the	
data	access	pa>erns	within	the	template.	

• 	Templates	are	instan1ated	by	passing	new	task	iden1fiers	and	
parameters	to	the	workers.	

Worker	1	 Worker	2	

Controller	

Instan;ate	 Instan;ate	

Worker	1	

Controller	

Instan;ate	

Patch	
copy	

•  	 Available	 cloud	 frameworks	 either	 support	 fine-grained	
task	scheduling	or	high	task	throughput,	but	not	both.	

! 	Systems	such	as	Naiad	and	TensorFlow	install	sta1c	data	
flow	graph	for	efficiency	but	sacrifice	scheduling	flexibility.	

! 	Systems	such	as	Spark	schedule	at	the	task	granularity	
but	only	handle	few	thousands	tasks	per	second.	

Scalable,	Fast	Cloud	Compu1ng	with	Execu1on	Templates		
Omid	Mashayekhi,	Hang	Qu,	Chinmayee	Shah,	Philip	Levis		

Introduc1on	and	Mo1va1on		 Implementa1on	

Evalua1on	

Execu1on	Templates	

HPC	Applica1ons	

•  	 Basic	 Blocks:	 execu1on	 templates	 cache	 control	 plane	 decisions	 at	 the	
granularity	 of	 basic	 blocks	 in	 the	 driver	 program.	 Unlike	 batching,	 execu1on	
templates	are	capable	of	handling	nested-loops	and	data-dependent	branches.	

Data	Analy1cs	Fine-Grained	Scheduling	 Task	Throughput	

• 	Edit:	minor	changes	 in	 the	scheduling,	
for	 example	 task	 migra1ons,	 reflect	 in	
the	templates	as	in	place	edits	added	by	
controller	upon	instan1a1on.	

• 	 Patch:	 templates	 are	 not	 bound	 to	 a	
sta1c	 control	 flow.	 Controller	 can	 patch	
the	worker	state	to	enforce	the	required	
precondi1ons	of	the	templates.	 Edits:	migra1ng	task	from	

worker	2	to	worker	1.	
Patching	the	
worker	state.	

• 	Although	Nimbus	has	a	centralized	controller	
similar	to	Spark,	it	handles	orders	of	magnitude	
higher	task	throughput.			

•  	 Nimbus	 with	 execu1on	 templates	 matches	
the	 performance	 of	 distributed	 frameworks	
with	sta1c	data	flow	(Naiad)	while	keeping	the	
scheduling	granularity	(Spark).		

•  	 Execu1on	 templates	 allow	 running	 complex	 water	
simula1on	 (PhysBAM)	 with	 triply-nested	 loop	 and	 data	
dependent	branches	within	15%	of	MPI	performance.		

• The	cost	of	edits	is	propor1onal	to	the	size	of	
scheduling	changes	(single	edit	costs	41μs).	

• 	Execu8on	templates	introduce	a	new	design	point:	

!  	 For	 reoccurring	 computa1ons	 cache	 the	 control	
decisions	 on	 compu1ng	 nodes	 as	 templates	 and	
instan1ate	the	templates	with	new	parameters.		

! 	 Changes	 in	 scheduling	 are	 supported	 as	 edits	 in	 the	
installed	templates.	The	cost	of	scheduling	is	propor1onal	
to	the	size	of	changes.	

Logis1c	regression	in	Spark	2.0	MLlib:	Increasingly	parallelizing	reduces	computa1on	
1me	(black	bars)	but	control	overhead	outstrip	these	gains,	increasing	comple1on	1me.		

Spark Nimbus
no templates templates

Iteration 53.0s 6.44s 5.03s
Task 4.86s 0.14s 0.14s

Table 2: Average iteration and task length in seconds
for PageRank over the Wikipedia graph, broken into 400
partitions run on 40 cores.

Increasing the number of workers increases the task
rate. As the number of workers increases to 50 and
100, the scheduler cost of fast tasks becomes more pro-
nounced. With 100 workers, Nimbus without templates
is only 40% faster than Spark. With templates, however,
it still runs nearly 8 times faster. At this scale, if Nimbus
workers were completely utilized, they would be running
0.26 million tasks per second.

We measured Spark as being able to schedule 8,000
tasks per second. Ousterhout et al. measured Spark as
being able to schedule only 1,500 tasks per second [24].
We are unsure of the exact reason for this discrepancy,
but note that when we ran Spark with logging enabled its
performance matched what they reported.

With 100 workers, the task rate is 6400 tasks/second,
within the scheduler’s capabilities, so Spark’s perfor-
mance is flat and execution time increases only slightly
with larger problems. Financial limitations prevent us
from scaling to more workers, but our results show that
doing so would lead the scheduler to become the bottle-
neck.

6.3 PageRank

This experiment examines what happens when increas-
ing task rates leads to the network, rather than schedul-
ing, becoming the bottleneck. This is a common phe-
nomenon in HPC workloads as they typically do not
have a central controller and carefully balance compu-
tation with communication. We implemented an itera-
tive PageRank over a graph of English Wikipedia arti-
cles and links in Nimbus, similar to the experiment de-
scribed in Spark paper [28]. The Wikipedia dump [7]
contains 12 million articles and 372 million links. The
computation runs two steps per iteration – a scatter step
that updates links (edges) with rank contributions from
articles (nodes), and a gather step that collects contri-
butions for every article. We used Metis [4] to parti-
tion the graph into 400 edge-cut partitions over 5 work-
ers, using k-way partitioning. Spark’s PageRank imple-
mentation uses vertex-cut partitioning. PowerGraph [15]
shows that vertex-cut partitions perform better on natu-
ral graphs with power-law degree distributions. We leave

#cell (#parts) entire step solver iteration
#access rate #access rate

5123 (64) 1.5M 63Kps 13K 92Kps
10243 (512) 12.5M 394Kps 102K 463Kps

Table 3: Number of data object access and access rate for
each step of water simulation. Numbers are reported sep-
arately for the solver substeps. Note that solver iterations
have higher rate as the tasks are shorter.

Figure 10: Still of a PhysBAM simulation of water being
poured into a glass.

vertex-cut partitioning and other graph optimizations in
Nimbus for future work.

We ran the computation over 5 workers (40 cores),
giving 10 partitions per core. Table 2 shows the re-
sults. Individual tasks in Nimbus run 37 times faster than
Spark. However, since Nimbus uses an edge-cut parti-
tioning, this translates to only an 8x speedup in iteration
time as CPUs are only 27% busy. Communication be-
comes the bottleneck. With 400 edge-cut partitions, each
partition communicates with almost all other partitions,
even with k-way partitioning, resulting in over 120,000
messages. Even though this application is communica-
tion bound, rather than scheduler bound, templates still
provide a 28% speedup, resulting in PageRank running
over ten times faster than the Spark implementation.

6.4 Fluid Simulations
This final set of experiments examines how templates
scale to support extremely complex, high performance
applications. PhysBAM is an open-source library for
simulating many phenomena in computer graphics [13].
It is the result of over 50 developer-years of work and
has won two Academy Awards. We ported PhysBAM to
Nimbus, providing tasks that implement PhysBAM func-
tions and interfacing PhysBAM data objects into Nimbus

10

196.8	

Nimbus	/wo	templates	

Nimbus	 MPI	

Itera;on	Time	(s)		

36.5	

31.7	

nimbus.stanford.edu	

t1	

Worker	1	

P1	

t3	P3	

Task	IDs	

Parameters	

R	 Data	Copy	

t2	

Worker	2	

P2	

S	

t1	 t3	 R	
p1	 p3	

t2	 S	
p2	


