arXiv:1606.01966v1 [cs.DC] 6 Jun 2016

Distributed Graphical Simulation in the Cloud

Omid Mashayekhi

Chinmayee Shah Hang Qu

Andrew Lim Philip Levis

Stanford University

{omidm, chshah, quhang, alim16}@stanford.edu

Abstract

Graphical simulations are a cornerstone of modern media
and films. But existing software packages are designed to run
on HPC nodes, and perform poorly in the computing cloud.
These simulations have complex data access patterns over
complex data structures, and mutate data arbitrarily, and so
are a poor fit for existing cloud computing systems. We de-
scribe a software architecture for running graphical simula-
tions in the cloud that decouples control logic, computations
and data exchanges. This allows a central controller to bal-
ance load by redistributing computations, and recover from
failures. Evaluations show that the architecture can run exist-
ing, state-of-the-art simulations in the presence of stragglers
and failures, thereby enabling this large class of applications
to use the computing cloud for the first time.

1. Introduction

Graphical simulation is a staple of modern digital entertain-
ment. When we see a river flow in the movie Brave, an explo-
sion in Star Wars: Revenge of the Sith, or smoke billowing
from destroyed buildings in Man of Steel, we see the result
of computationally simulating fluids: water, fire, and smoke.

Being able to run simulations in the cloud would en-
able studios to elastically scale their simulation infrastruc-
ture when needed, such as during final production, when
each shot has its final render. Graphical simulation software
packages are designed to run on a single powerful server or
small, 3-4 node high performance computing clusters with
InfiniBand [2] as their interconnect. The techniques and al-
gorithms these simulations use work poorly in the cloud.
They assume that all nodes can communicate equally, all
nodes run at exactly the same speed, and failures are very
rare (e.g., < 1 in 40,000 in a multi-day simulation). They
evenly partition the simulation across all of the cores used,
so the simulation runs as fast as the slowest core. To handle
rare failures, they use expensive and infrequent checkpoint-
ing mechanisms. Furthermore, parallel nodes run in lock-
step, such that the high latency of Ethernet (100 microsec-
onds, rather than 500 nanoseconds with InfiniBand) causes
cores to fall idle during communications.

Graphical simulations require very different data and ex-
ecution models than what current cloud computing systems

pal@cs.stanford.edu

provide. A graphical simulation uses multiple complex data
models, such as a marker-and-cell grid [15] for the fluid vol-
ume, a dense particle field for the fluid surface [13], and a
system of linear equations to ensure fluid does not disap-
pear. These data structures are geometric in nature and com-
putations on neighboring regions have tight dependencies.
A simulation involves a loop of many iterations that advance
time. All simulation state is held in memory, as I/O is far too
slow. These requirements differ greatly from data tuples as
in MapReduce [11], Spark [23], and Naiad [20] or graphs as
in Pregel [19] and PowerGraph [14].

This paper presents Nimbus, a system for running graph-
ical simulations in the computing cloud. To deal with the
scheduling challenges inherent to cloud systems, Nimbus,
like other cloud systems, uses a centralized controller node
that is responsible for monitoring the entire state of the sim-
ulation. To enable dynamic load balancing, Nimbus decou-
ples data exchange and the simulation execution plan. The
system runtime is responsible for data exchanges between
nodes, and invoking a simulation function after all its data
is ready. This decoupling gives Nimbus the ability to place
data and computation based on global knowledge of the sys-
tem. To make applications tolerant to node failures, the con-
troller continuously monitors progress and dynamically in-
serts check-points to save data, as needed.

The next section provides an overview of graphical simu-
lations, which motivates a set of requirements for a system to
support them in the cloud. Section 3 presents a system design
whose abstractions meet these requirements. Section 4 de-
tails implementation, and. Section 5 evaluates how the sys-
tem handles stragglers and node failures. Section 6 and Sec-
tion 7 conclude with related work and a set of open questions
for future work.

2. Graphical Simulations

Graphical simulations use different data models and algo-
rithms than what available cloud frameworks provide. This
section gives an overview of the principal methods and al-
gorithms used in graphical simulations, and explains the
challenges of distributing these computations over multi-
ple nodes. The nature of these simulations and the asso-
ciated challenges motivate a set of system design require-
ments (§3).

As a concrete example of a graphical simulation, we fo-
cus on PhysBAM [5], an open source physics based software
package for fluid and rigid body simulations. Movie studios
such as ILM and Pixar use PhysBAM in production films,
and the developers have won two Academy Awards for its
contributions to special effects [4]. PhysBAM can simulate
a huge range of phenomena, but in the rest of this paper, we
focus on a water simulation. Water simulation is a canonical
example, as it is extremely difficult and employs methods
that are required for other fluid simulations such as smoke
and fire.

2.1 Fluid Models and Simulation Algorithms

There are two basic ways to computationally represent a
fluid: a grid or particles. A grid divides simulated volume
into cells. Per-cell state describes the state of the simulation,
such as whether it contains fluid, pressure, and velocity. The
second approach is to represent the fluid as a set of particles,
each of which has its own (x,y,z) coordinates, velocity, and
size. Grids and particles have different strengths and weak-
nesses. For example, a grid smoothes out small ripples but
do not model splashes well, while particles have difficulty
representing fixed boundaries such as the edge of a glass.

The particle-levelset method [13], pioneered by Phys-
BAM, combines particle and grid representations and is why
movie and special effect studios can simulate water, smoke,
and fire today. The key insight is that the most important vi-
sual feature is the surface of the fluid. The particle level-set
method use a coarse grid, augmented with dense particles
only on the surface. Combining these two methods, however
makes simulations much more complex, as the grids and par-
ticles interact in subtle and interesting ways. !

A simulation is a loop: each iteration steps time forward. 2
When time passes a frame boundary, the simulation outputs
the visual state of the simulation for later rending. An it-
eration has 22 distinct computational steps, which can be
divided into three major categories: updating grid cells, up-
dating particles, and solving a set of linear equations that
enforce physical laws on the water (e.g., it does not com-
press or disappear). Solving the linear equations uses a sub-
loop within the main loop. In a typical 256 water simula-
tion, there are on average 20 main loop iterations per frame
(24fps means 42ms/frame, the main loop time step is 1.6ms)
and 100 iterations of the inner solver loop. Table 1 shows
where a time step spends its time.

2.2 Current Distributed Simulations

Running a simulation across multiple nodes requires parti-
tioning the simulation geometry across them. The basic chal-

! For example, particles that leave the surface become drops in a splash,
and must be correctly merged back with the water mass when they hit
the surface again. Readers interested in a more complete description of the
complexities can read the seminal book on the topic by Bridson [9].

2The length of the time step is determined by fluid velocity and grid
resolution, so that fluid does not seem to leap through space.

SNy

/’P\

7 ~

NS

ghost cells

Figure 1. A 1D row of water represented in a grid. When
partitioned across two processes, the two processes must ex-
change ghost cells of state so they can perform computations
locally.

local ghost ——— [

(center / center

remote ghost ——— >

1D grid cells 2D grid cells

Figure 2. Ghost cell configurations in simulation grids. The
local state on a node consists of 3¢ objects, where d is the
dimensionality of the grid, while the combined local and
remote state a node must use consists of 5¢ objects. A 3D
grid is not shown for visual simplicity: per-node state is 27
objects and the total state is 125 objects.

lenge is that partitions are not independent. The state of wa-
ter at any cell is dependent on its neighboring cells, some of
which may be on a different node. Furthermore, solving the
linear equations involve global operations.

Partitions can be distributed while minimizing data shar-
ing with ghost cells. Consider a simple 1D simulation of a
pipe with water, shown in Figure 1. Each partition is divided
into five parts per axis: a large, central region that only the
local computations need, two thin regions of ghost cells that
are sent to neighbors, and two thin regions of ghost cells that
are received from neighbors. Figure 2 shows a partition in a
1D and a 2D grid. For a 3D simulation, a partition consists
of 125 separate regions (5°). Each variable is partitioned in
this manner, resulting in over 29 thousand data objects for 16
partitions, in a typical simulation with 21 different variables.

In addition to computing on particles and grid cells, simu-
lations also need to perform global reductions. For example,
to compute the time step, or the residual of the linear solve,
the simulation takes the maximum value across all of the
partitions. Table 1 summarizes the number of computation
substeps, global reductions, and ghost value updates in the
main-loop and its components for water simulation.

one solver particle- entire

iteration levelset main-loop

computation substeps 4 22 422
global reductions 2 2 202
ghost value updates 1520 73.6K 225.6K
duration 61ms 6.7s 12.91s

Table 1. Number of computation substeps, global reduc-
tions, and ghost value updates for a 256> water simula-
tion with 16 partitions. Each main-loop consists of particle-
levelset operations in addition to 100 solver iterations.

When a computational step (e.g., reseeding particles)
completes, that node needs to send the updates it made to
local ghost regions and receive updates for remote ghost re-
gions. PhysBAM does this in lockstep: each worker process
completes its computation, sends its results, then blocks on
receiving results from neighbors. This approach tightly cou-
ples the control flow of the program with its state exchange.
Furthermore, the partitions are set up statically at compile
time and cannot move. If one node fails, the entire simula-
tion fails. The simulation can run only as fast as the slowest
node in the cluster, so stragglers are a major concern.

2.3 Design Requirements

Finally, while interacting with the PhysBAM developers and
other graphical simulation researchers, we learned that there
is a strong hesitation in changing available libraries and code
bases. Core libraries has been tested for correctness and
optimized for performance over many years. For example,
PhysBAM library is over 50 developer-years worth of work
and supports tens of applications.

In order to run these simulations in the cloud, in presence
of stragglers and failures, we derived the following three
system requirements:

1. the system’s abstractions must allow dynamic data place-
ment and load distribution for graphical simulations,

2. the runtime must schedule around stragglers and recover
from failures, and

3. the system must be able to run existing simulation codes
with minimal changes.

Achieving the first two goals will enable simulations to
run in the cloud; achieving the third will mean there are
simulations to run and this capability will be an attractive
option for developers.

3. System Design

This section presents a system design that addresses the re-
quirements listed in the previous section. To satisfy the first
requirement, we decouple control flow, computations and
data exchange. Specifically, an application is decomposed
into a series of jobs with pure computation and no commu-
nication. Each job has compact meta data that determine data
dependencies and job execution order. Nimbus runtime deci-

phers and performs data exchanges between nodes (for ghost
values and reductions) based on this metadata, as required.

To address the second requirement, Nimbus uses a cen-
tralized controller that maintains global information about
performance of nodes, to detect stragglers and failures. This
is similar to other cloud computing systems [10, 11, 23]. The
controller makes decisions about data and job placement,
load-balancing the simulation as stragglers appear. It creates
periodic checkpoints of the simulation state, and rewinds
back, when one or more nodes fail.

Nimbus does not make any assumptions about data access
and computation patterns within computation jobs, except
that computation jobs do not perform any data exchanges on
their own. This allows us to use code from existing simu-
lation libraries with minimal changes and some additional
code to specify metadata. This helps us meet the third goal.
This is covered in more detail in § 4.1.

3.1 Application Abstraction

Each variable over a simulation domain is decomposed into
disjoint data objects over the ghost and central regions, as
depicted in Figure 2. Application logic is decomposed into
a series of computation units, called jobs. Each job is char-
acterized by four things: (i) Read set of data objects to read,
(i1) Write set of data objects to write, (iii) Before set of jobs
that must finish before the job starts executing, and (iv) Com-
putation code to perform the actual computation. Before sets
determine the control flow of the application, while read-
/write sets determine the data requirements of a job. Before
sets and read/write sets comprise a job’s metadata.

Jobs mutate data and/or spawn new jobs. An application
starts with a special job main, which spawns new jobs. Ap-
plications iterate by spawning jobs that spawn a batch of
jobs. When a job running on a node spawns a new job, the
node submits the job to a centralized controller for execu-
tion. The controller assigns these spawned jobs to nodes,
which execute the corresponding simulation code.

Figure 3 illustrates this with a simplified 1D water simu-
lation example over two partitions. The simulation updates
velocity for each cell that contains water, and then moves
water using the updated velocity. The application comprises
of four jobs — main spawns Forloop, and ForLoop
spawns AdvanceVelocity, AdvanceWater and con-
ditionally, a new ForLoop job for the next iteration. Fig-
ure 3(a) shows how velocity is decomposed into disjoint
central and ghost data objects. Figure 3(b) shows the meta-
data for each job. Note that data objects over ghost regions
appear in read set of multiple jobs, while central data objects
are read/written by only one job, in each substep. The job
graph in Figure 3(b) depicts the application flow. Jobs with
a dashed outline spawn new jobs for the next iteration.

Exchanging job metadata between controller and nodes
quickly and storing them in optimized data structures for fast
queries is critical to runtime performance. Data objects and
jobs are represented using integer identifiers, data id and job

(a) Simulation data as disjoint data.

" \ \ Substep Job Name Read Set Write Set Before Set
jmain
~
,‘E main - - -
(Fl,\ For Loop F .
N 1 - - main
Advance v D.D,D. D. D F
@ @ Velocity 1 1,%2,%3 ¥1,%2 1
| ><] v, D,D3;D, D3D, F,

Advance
@ @ Water Wl Dl,DZ,D3 Dl,DZ V1,V2
Boundary

W, D,D,D, D;D, V, V,

’ For L
‘\FLZ or Loop FZ - - Wl,wz
(b) Job graph for one simulation iteration, with each job’s meta-data.
Each substep has two jobs that operate over left and right partitions.

Dashed jobs spawn new jobs.

Figure 3. Discretized 1D water simulation example under
Nimbus abstraction split into two partitions.

Centralized
Controller

Figure 4. Centralized controller driving 2 nodes for one it-
eration of discretized 1D water simulation example. Nodes
submit jobs to scontroller in phase 1. Controller instantiates
data objects, inserts required data exchanges (X) in between
compute jobs and assigns jobs to nodes in phase 2. Compu-
tation and data exchange happen at the nodes in phase 3.

id. This allows Nimbus to compactly represent metadata as
integer sets >, and deploy efficient hash table for queries.

3.2 Centralized Controller

Centralized controller monitors resources in the cloud and
drives a simulation over available resources by issuing com-
mands to the nodes. These commands instantiate data ob-
jects, assign computation jobs to nodes, and exchange data

3 A serialization implementation based on protocol buffer [6] shows about
90% compression ratio compared to ASCI identifiers.

values between nodes. The controller distributes simulation
state among nodes by instantiating one or more partitions of
simulation over each node.

As new jobs are submitted to controller, it builds the
job graph from their meta data. The controller uses the job
dependencies (before set) and data dependencies (read/write
set) to determine what data values to pass to computation
jobs — what updates from previous jobs are visible to a
job. Based on the existing distribution of data objects, the
controller picks a target node for executing a job. If the
target node does not have updated data values (e.g. out-dated
ghost values), it inserts copy jobs to exchange data between
nodes. A runtime before set comprises of all the computation
and copy jobs that must run before a job starts executing.
It ensures that data accesses are race free, and jobs read
correctly updated data. The controller sends a runtime before
set, and data instance identifiers to nodes, when issuing a
commmand to execute a job. A node executes a job only
after all the jobs in its runtime before set complete.

Figure 4 shows one iteration of the simplified water ex-
ample. A FoorLoop job executes on one of the nodes, and
spawns new jobs for the next iteration. The controller issues
commands to create data objects dj, d» and dg onnode 1, and
sends jobs that operate on the left partition to node 1. Simi-
larly, it issues commands to create data objects dé, ds and dy,
and sends jobs that operate on the right partition to node 2.
After the first set of AdvanceVelocity jobs, ghost val-
ues on each node need to be updated from the neighbor. The
controller inserts copy jobs to exchange these.

The controller constantly monitors nodes for their health
and performance, and redistributes data and computations
when a node starts straggling or fails. It regularly check-
points a simulation by taking a snapshot of the job graph and
saving simulation state on persistent memory. Upon failure,
it rewinds back to the latest checkpoint and resumes simula-
tion using the saved simulation data. The following section
discusses load-balancing and fault-tolerance in more detail.

A design with a centralized controller has two major ben-
efits. First, global knowledge about cloud resources and their
performance helps in detecting stragglers and failures. Sec-
ond, control logic for a simulation does not need to be dis-
tributed over multiple nodes — only the centralized controller
needs metadata for all jobs. Exchanging job metadata among
all nodes to build the job graph at each node induces a lot of
overhead in the cloud, due to large network latencies.

4. Implementation

This section covers three main implementation details re-
quired to evaluate Nimbus abstraction success in running
graphical simulations in presence of stragglers and failures.
First, we explain negligible effort in porting current applica-
tions into Nimbus. Next, the details of providing load bal-
ancing and fault tolerance features are covered. There are a

lot of details including controller optimizations that explain-
ing them is out of the scope of this paper.

4.1 Porting Applications

We have ported water and smoke simulation from PhysBAM
library into the introduced abstraction, by wrapping existing
PhysBAM function calls with Nimbus job abstraction, and
adding two loop jobs that spawns the main-loop and the
solver-loop with correct job meta data. There are helper
functions that help specify read/write/before set, and thus
the required changes are small. All in all, water (smoke)
simulation required about 2,000 (1,300) additional lines
of C++ code to be ported compared to the implemented
simulation logic in PhysBAM with over 100,000 lines of
C++ code.

Note that, PhysBAM computations expect to operate over
a contiguous data whereas, in our abstraction data is split
into disjoin objects. To Eliminate any changes in the code
base, we implemented a Translator Layer that translates
between the disjoint objects and contiguous data back and
forth. The translation happens partially for only the updated
objects within the contiguous data. Explaining the details
and intricacies of this layer is out of the scope of this paper.

4.2 Load Balancing

Controller tries to distribute computation work uniformly
among all nodes by adjusting the simulation region each
node is responsible for and assigning jobs accordingly. It
carves out the whole simulation region into contiguous re-
gions and ties each region to a node. The target node for
job execution would be the node with the region that has
the most overlap with the objects in the job’s read/write set.
Continuous region assignment eliminates the communica-
tion between nodes.

To achieve load balancing, controller reduces the size
of the region assigned to a node once it detects the node
becomes a straggler. The controller detects stragglers by
periodically retrieving performance report from each node.
A node is treated as a straggler if the ratio of computation
time over total time is over a certain percentage and other
nodes are blocking on its ghost cell data transfer.

4.3 Fault Tolerance

Controller periodically creates checkpoints of the simulation
state to rewind back from in case of failures. Simulation
states are made persistent to disk during checkpointing, and
are sharded over different nodes and indexed by a distributed
key value store on top of leveldb[3].

The states to be checkpointed includes: a snapshot of the
job graph, all the parent jobs that submit other jobs to the
controller (e.g. For Loop jobs in Figure 3), and all data
objects that the parent jobs or the jobs they spawned might
access. These saved states are enough for the controller to
do a complete rewind back. Upon failure, controller replaces
the current job graph with the saved one, assigns the saved

parent jobs to nodes for execution, and all data objects that
might be possibly accessed are restored. The restored parent
jobs will restart the whole simulation from the checkpoint.

5. Evaluation

This section evaluates how Nimbus performs in presence of
stragglers and failures. All experiments use a 3D simula-
tion of water pouring into a half full glass [1]. We compare
Nimbus performance to that of Physbam’s MPI-based dis-
tributed implementation. All experiments are run on Ama-
zon EC2; Nimbus controller runs on a ¢3.2xlarge instance
with 15GB of RAM and 8 hyper-threaded cores, while each
compute node is a c3.large instance with 3.75GB of RAM
and 2 hyper-threaded cores*. Unless otherwise stated, all ex-
periments run for 3 frames and the simulation is 256° grid
split into 16 partitions and distributed over 8 computation
nodes. When there are no stragglers or failures, this simula-
tion takes under 15 minutes.

Figure 5 shows how Nimbus and PhysBAM perform with
stragglers. To measure Nimbus’ worst case overhead, we
first compare its performance to PhysBAM in an HPC con-
figuration. This is the worst case because it is the environ-
ment PhysBAM was designed for — there are no stragglers
or failures. Nimbus runs slightly slower in this case. The
overhead is primarily round-trip-times between workers and
the controller during the linear solve. As Table 1 shows, for
every 61ms computation period there are more than 1500
data exchange commands issued from controller to nodes.
To compare performance in presence of stragglers, we eval-
uate Nimbus and Physbam when one of nodes starts strag-
gling 5 minutes into the simulation. We simulated the strag-
gler by running background processes on one of the nodes
(same method as [22]). With this straggler and no load redis-
tribution, the simulation runs 5 to 6 times slower >. It takes
less than 50 seconds for the controller to detect and adapt
to the straggler before converging to a balanced load. Phys-
BAM cannot adapt and so it goes as slowly as the straggler.
However, Nimbus migrates two partitions at the straggler to
other two nodes. This way, the simulation runs around 1.5X
slower, as two nodes run 3 partitions instead of 2.

Last we evaluate Nimbus’ fault tolerance mechanisms. In
this setup, checkpointing happens every 10 minutes, and one
of the nodes fails after 11 minutes into the simulation. Fig-
ure 6 depicts the iteration progress for a time window. The
controller creates a checkpoint after completion of 437 iter-
ation, and one of the nodes fails in the middle of computing
52" jteration. Checkpoint creation overhead is less than 18
seconds. When the node fails, its in memory state is gone,
and controller rewinds back to the last checkpoint, and re-
computes the iterations from there. The first iteration after

4 Compute-optimized c3 instances use Intel Xeon E5-2680 v2 (Ivy Bridge)
processors that run at 2.8GHZ.

5 As measured and reported in [7], 10% of the outliers are 10X slower in the
cloud.

w60 : ‘ :
c HEl Nimbus 51.7 51.7
2 50 T3 PhysBAM
©
A 40
Q
S 30.1
S 30
% 20! 19.6
=
o 12.9
gio 23
)]
Z0
HPC Setup Straggler Straggler
Adaptation Converged

Figure 5. Running a 256 water simulation in HPC set-
ting and cloud setting over 8 nodes. Main iteration duration
length is measured in case of PhysBAM MPI implementa-
tion vs. Nimbus. For the cloud settings the adaptation and
converged periods are separated.

=) - Beforé FaiIure‘ 1

s 140 1 After Failure

o 120;

.5 100+ rewinding

IS I]

!DE 80 checkpointing

g— 60 frame 3 |

o 40t frame 2

—C' / failure

&l o

= Nl
30 35 40 45 50

Main Loop Iteration Number

Figure 6. Running a 256 water simulation in presence of
failure over 8 nodes. Iteration progress is depicted against
time. Each ripple shows a checkpoint creation. At each knee
one of the nodes has failed and simulation is reverted back
by the centralized controller to the last checkpoint.

rewinding takes around 153 seconds which is due to loading
aroung 2.4GB of state from hard disk of remote nodes. Also,
iterations take longer after failure because there are less re-
sources available (same as in the straggler case).

6. Related Work

Previous work on support for distributing physical sim-
ulations, such as Legion [8], Charm++ [18] and adap-
tive MPI [16] have focused on supercomputing and high-

performance computing environments. Legion provides mech-

anisms to decouple computations from where they run, but
leaves collection and synchronization of runtime informa-
tion, and actual load-balancing to applications, and does

not provide any fault tolerance. Charm++ and adaptive MPI
load-balance by migrating chare objects and virtual MPI
processes, which do not have any information about geomet-
ric locality. Simulation languages such as Liszt [12] target
portability of code, and use existing mechanisms from the
supercomputing domain to parallelize code. Dandelion [21]
uses a data flow-engine, similar to Dryad [17], that is well-
suited for parallelism at a coarser granularity.

Existing cloud computing systems such as Map-reduce [11]
and Spark [23] target highly data parallel computations over
key-value stores. Systems such as Pregel [19] and Power-
graph [14] target computations such as scatter and gather
over graph data structures. These computations over key-
values and graphs have very different access patterns com-
pared to graphical simulations over grids. Nimbus applica-
tion jobs on the other hand can read and write data at arbi-
trary locations in their read and write sets. Application job
graphs involve complex inter-job and data dependencies in
Nimbus.

7. Conclusion and Future Work

Nimbus is a runtime system for running graphical simulation
in the cloud. To utilize cloud resources efficiently, Nimbus
addresses problems such as stragglers and failures by load-
balancing and checkpointing. The key to achieving this is
decoupling control flow, computations and data exchanges.
With careful design and optimized data structures, the cen-
tralized controller does not become a bottleneck at common
simulation scales. We have ported a PhysBAM water simula-
tion, an advanced graphical simulation application, to Nim-
bus with negligible code changes, and proved that Nimbus
can adapt to cloud performance problems well.

In future, we plan to explore running more partitions per
node to have more flexibility for load balancing, and run
even larger simulations. We plan to examine and address
scalability issues when running on a large number of nodes.
The final objective is to be able to run large simulations on
hundreds of elastically provisioned nodes, instead of small
and expensive high performance computing clusters.

References

[1] PhysBAM Water Simulation. http://physbam.
stanford.edu/~mlentine/project.html#
water.

[2] InfiniBand. http://www.infinibandta.org/.
[3] Leveldb. https://github.com/google/leveldb.

[4] Oscar Aci-Tech Awards. http://www.oscars.org/
sci-tech.

[5] PhysBAM. http://physbam.stanford.edu/.

[6] protocol buffer. https://github.com/google/

protobuf.

[7] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, 1. Stoica,
Y. Lu, B. Saha, and E. Harris. Reining in the outliers in map-

http://physbam.stanford.edu/~mlentine/project.html#water
http://physbam.stanford.edu/~mlentine/project.html#water
http://physbam.stanford.edu/~mlentine/project.html#water
http://www.infinibandta.org/
https://github.com/google/leveldb
http://www.oscars.org/sci-tech
http://www.oscars.org/sci-tech
http://physbam.stanford.edu/
https://github.com/google/protobuf
https://github.com/google/protobuf

reduce clusters using mantri. In OSDI, volume 10, page 24,
2010.

[8] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion:
Expressing locality and independence with logical regions.
In High Performance Computing, Networking, Storage and
Analysis (SC), 2012 International Conference for, pages 1—
11. IEEE, 2012.

[9] R. Bridson. Legion: Expressing locality and independence
with logical regions. In Fluid Simulation for Computer
Graphics, 2008.

[10] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
et al. Spanner: Google’s globally distributed database. ACM
Transactions on Computer Systems (TOCS), 31(3):8, 2013.

[11] J. Dean and S. Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51
(1):107-113, 2008.

[12] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina,
M. Barrientos, E. Elsen, F. Ham, A. Aiken, K. Duraisamy,
et al. Liszt: a domain specific language for building portable
mesh-based pde solvers. In Proceedings of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, page 9. ACM, 2011.

[13] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid
particle level set method for improved interface capturing.
Journal of Computational Physics, 183(1):83-116, 2002.

[14] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on natu-
ral graphs. In OSDI, volume 12, page 2, 2012.

[15] F. H. Harlow, J. E. Welch, et al. Numerical calculation of
time-dependent viscous incompressible flow of fluid with free
surface. Physics of fluids, 8(12):2182, 1965.

[16] C. Huang, O. Lawlor, and L. V. Kale. Adaptive mpi. In Lan-
guages and Compilers for Parallel Computing, pages 306—
322. Springer, 2004.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In ACM SIGOPS Operating Systems Review, vol-
ume 41, pages 59-72. ACM, 2007.

[18] L. V. Kale and S. Krishnan. CHARM++: a portable concur-
rent object oriented system based on C++, volume 28. ACM,
1993.

[19] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages 135—
146. ACM, 2010.

[20] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: a timely dataflow system. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, pages 439-455. ACM, 2013.

[21] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fet-
terly. Dandelion: a compiler and runtime for heterogeneous
systems. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, pages 49—68. ACM,
2013.

[22] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica. Improving mapreduce performance in heteroge-
neous environments. In OSDI, volume 8, page 7, 2008.

[23] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: cluster computing with working sets. In
Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing, pages 10-10, 2010.

	1 Introduction
	2 Graphical Simulations
	2.1 Fluid Models and Simulation Algorithms
	2.2 Current Distributed Simulations
	2.3 Design Requirements

	3 System Design
	3.1 Application Abstraction
	3.2 Centralized Controller

	4 Implementation
	4.1 Porting Applications
	4.2 Load Balancing
	4.3 Fault Tolerance

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work

